

Toward Patterns for the “Quality without a Name”

Adrienne H. Slaughter
Carol Strohecker

Workshop position paper, CHI’00, Human Factors in Computing Systems, Assoc. for Computing Machinery.
Originally appeared as Working Paper 2000-01, Mitsubishi Electric Research Laboratories.

Abstract

We offer an interaction design pattern for selecting instantiations of a given device, and suggest
additional points for discussion at the CHI’2000 workshop on interaction design patterns. We emphasize
the need for thoughtful documentation of the purpose of design patterns, and the importance of applying
them in a participatory design framework. We recommend that case studies of practioners formulating
and applying such patterns precede production of a report on the range of interaction design patterns.

Toward Patterns for the “Quality without a Name”

Adrienne H. Slaughter
Carol Strohecker

Mitsubishi Electric Research Laboratory (MERL)
201 Broadway

Cambridge, MA 02139 USA
+1 617 621 7594, +1 617 621 7517

slaughter@merl.com, stro@merl.com

ABSTRACT
We offer an interaction design pattern for selecting
instantiations of a given device, and suggest additional
points for discussion at the CHI’2000 workshop on
interaction design patterns. We emphasize the need for
thoughtful documentation of the purpose of design
patterns, and the importance of applying them in a
participatory design framework. We recommend that case
studies of practioners formulating and applying such
patterns precede production of a report on the range of
interaction design patterns.

Keywords
Interaction design, design patterns, Java framework,
construction kits

INTRODUCTION
During the past few years, with various colleagues, we
have developed several software construction kits that
differ in content and interaction design, yet bear
similarities to one another so fundamental as to constitute
a genre [1, 8, 14]. We are currently developing a Java
framework that generalizes the key concepts and
structures, in an attempt to facilitate implementation of
future kits. This endeavor shares concerns with pattern-
observing and pattern-making, in the realms of both
interaction design and software architecture [3, 5].
We see patterns as starting points, no collection of them
being sufficient to realize an entire implementation of a
building, an urban setting, a software architecture, or an
interaction design. Patterns are summaries of experience,
time-honored combinations of observation and practice.
Understanding how to apply such wisdom poses a steep
learning curve and requires the support of thoughtful
documentation.
Here we describe a pattern encountered in the course of
interaction design for two of our kits. We also include
some more general thoughts about patterns and pattern

languages, in the hope that they will become part of the
discussion at the CHI workshop.

AN INTERACTION DESIGN PATTERN
Choosing Among Different Instantiations
You have a certain type of selectable item, associated
with different instantiations, only one of which can be
active at once. You provide users with a palette or menu
(with icons or words representing the different
instantiations), which enables selection of the desired
instantiation.
Problem Statement
In many applications, it is common for a device to have
multiple possible instantiations. The user will select one
instantiation for one purpose, and another instantiation for
another, related purpose. The instantiations are mutually
exclusive (only one can be active at a time). In order to
decide which instantiation to employ, the user needs to
know which instantiation is currently selected, and to see
it simultaneously with a potential new selection, so that
the two can be distinguished and compared.

Existing Examples
Examples from our construction kits

These images are from a prototype for a construction kit
in which users compose cartoon-like dancers from six
body parts: head, torso, arms, and legs. It is possible to
choose from among several instantiations for each part.
When the mouse is on the character’s head and the user
presses the mouse, a palette appears with smaller images
of alternate instantiations. As the user drags the mouse
within the palette, a highlight box moves to indicate
which head will be selected when the mouse is released.

These images are from the WayMaker kit. Users arrange
elements of urban landscapes into the form of a map,
which the software then transforms into a series of street-
level views along pathways through the mapped
environment. The tree on the right is an example one of
the elements, a landmark, currently instantiated as a tree.
By clicking on it, the user can activate the palette
displaying other possible options for this landmark,
including a bridge, a tower, a house, etc. When the user
presses on one of these options, another palette pops up,
which allows the user to specify which particular bridge,
tower, or house the landmark should become. This
example is interesting because it embodies the pattern in
two levels.
The View Menu in Microsoft Windows Explorer

The view menu in Windows Explorer allows the user to
specify how the system should display folders and files.
The options include different display styles and/or levels
of detail about each folder or file, allowing the user to
show the files in different ways. If a user clicks the
Views button, the current view is switched to the next
view in the list. If the arrow is pressed, the menu pops up
and the user can select which view to use. The current
view is indicated by a dot next to the name of that view.

The Text Color menu in Microsoft Word

The Text Color palette in Word allows the user to specify
the color of text. It is self-evident that text can only be
one color (at least in this context). The text color button
has a colored bar underneath the A to show the last
selected text color. If the user clicks the button, selected
text is set to be that color. If the user presses the arrow,
the menu pops up and allows one of many colors to be
selected. The color that will be selected when the mouse
is released is indicated by an inverted 3D rectangle, and
the name of the color is shown in a tool tip.

The Marquis Tool in Adobe Photoshop (or many of the
other tools in Photoshop)

The Marquis Tool button in Photoshop shows the
currently selected tool. A small arrow on the button
indicates the availability of alternate selections. If the
user presses and holds the mouse on the button, a menu
pops up, with the currently selected tool grayed out and
unable to be selected (since there is no reason to re-select
a tool that is already selected). The user makes a selection
by dragging the mouse to its image and releasing the
mouse button. The tool that will be selected when the
mouse is released is indicated by a lighter, inverted 3D
rectangle.

A General Solution
Provide an icon that reports the current state of the tool.
Signify that a menu or palette pops up by an illustrative
device such as a mini arrow. Clicking on the icon will
activate the tool in its current instantiation; pressing the
mouse on the icon will allow the current instantiation of
the tool to be changed. In the menu/palette that displays
instantiations and enables selections of the tool, signify
which one is currently active to provide feedback.
currentIcon = currentToolInstanceIcon
On <mouseClick>

activate currentToolInstance
On <mousePress & hold>

show ToolInstancePalette (with currently selected
tool signified)

while <mouseDrags> showNextToolInstance (the
tool that will be selected if the mouse is released)

On <mouseRelease>
currentToolInstance = showNextToolInstance
currentIcon = currentToolInstanceIcon
activate currentToolInstance

Related Patterns
This pattern is related to patterns that can be described as
Choice From a Small Set, Status Display (or Currently
Selected Option), Small Groups of Related Things,
Localized Object Actions [c.f., 15].

CONSIDERATIONS IN DEVELOPING PATTERNS
Anthologies of design pattern patterns are offered as
compendia of accumulated wisdom, general descriptions
of past experience that can inform similar work in the
future. Unfortunately, however, such anthologies may
appear as catalogs of solutions – pick and choose,
combine willy-nilly, and voila! You have a good design.
How can producers of design patterns ensure that their
efforts will be well understood and sensibly applied?
Design patterns producers need to make clear that their
effort is conceptual in nature. Illustrating patterns with
pseudo-code is one way to help communicate the intended
conceptual level, but does the language of reuse counter

that message? [5] Patterns are practical but not to be taken
literally. Individual application contexts call for variations
in particulars of the patterns. Furthermore, the patterns’
usefulness depends on the skills, tastes, communication,
and coordination of the designers who bring them to bear
on a given problem [6, 4]. These non-patternable
essentials have a profound effect on the outcome of the
design process and contribute to the “quality without a
name,” the loss of which Richard P. Gabriel bemoans [4].
Even if the summarial, conceptual intent of the patterns is
communicated well, would people tend to misinterpret
such an anthology anyway? Consider that many people
prefer following recipes to adapting them to their own
current purposes. There is an obvious analogy to pattern
use. “Recipe-following” may have to do with issues of
trust and control running so deep within a personality that
it may be pointless to chide against taking such an
approach. It may be a matter of intellectual style [16].
Furthermore, depending on the situation, it can be quite
effective.
We encounter a similar problem on the relatively surface
level of skills. In our work we have been tempted to
provide code starters (“seeds”) and code generators
(“wizards”) to get people started who don’t know Java
well, but who do understand our conceptual approach and
want to create kits within the genre. By attempting to
support varying programming skills, we may be on the
road toward a cookie-cutter approach that bears a
resemblance to the unfortunate aspect of pattern use. We
are looking for ways to temper this effect.
As the CHI community attempts to promote beneficial
ways of thinking and talking about interaction design, we
may need to separate the language of accumulated
wisdom from the language of generating new interaction
designs. Observations that can be described as patterns
result from an analytic process; it is inevitably
problematic to invert such a process to a synthetic one.
One of our kits has brought this dilemma particularly into
focus. WayMaker users create maps from representations
of Kevin Lynch’s “elements of the city image,” and then
see street-level scenes along pathways within the mapped
domain [7, 10, 11, 13]. Lynch’s process of identifying the
structural elements was analytic, yet practitioners inverted
that process by using the elements as a basis for
generating urban designs. As with Alexander’s work, the
outcomes were often unsatisfying. Lynch studied a range
of reasons for this problem, re-explaining that the
elements are general and include only structural, not
personal nor aesthetic, aspects of urban experience.
However he focused most strongly on the problem that, in
spite of his example of having worked personally with
urban dwellers in identifying the elements, his colleagues
neglected city inhabitants when applying the elements in a
design process. In Lynch’s ideal world, non-professionals
would contribute to creating the environments they
inhabit. Lynch emphasized the need for a participatory

process in the practice of design, a caution we take
seriously in developing WayMaker and other kits, and in
identifying contexts for their use [8, 10].

CONCLUSION
In summary, we advocate for participatory design in
identifying interaction design patterns. Case studies of
practitioners working with users to formulate and apply
patterns could help in ascertaining whether they serve
equally well the needs of the designers and the end-users.
We look forward to a sustained conversation about these
issues, and ultimately to an anthology treating a range of
interaction design patterns.

ACKNOWLEDGMENTS
Several other people have also contributed to design,
development, and use of the kits informing our
framework: AARCO medical illustrators, William
Abernathy, Edith Ackermann, Aseem Agarwala, Noah
Appleton, Maribeth Back, Barbara Barros, Dan Gilman,
Mike Horvath, John Shiple, Doug Smith, students at
Harvard University's Graduate School of Design,
colleagues at MERL, and anonymous friends. Discussions
with Mario Bourgoin, Stephanie Houde, Sarah Kuhn,
Warren Sack, Tim Shea, and with Fred Martin, Seymour
Papert, Brian Silverman, and other members of the
Epistemology & Learning Group at the MIT Media Lab,
have inspired and/or improved various kits as well as the
more general formulations. We thank John Evans,
Aradhana Goel, Tim Gorton, and Milena Vegnaduzzo for
participating in trials of the Kit4Kits. MERL supports the
research.
REFERENCES
1. Ackermann, E., and Strohecker, C. Build, launch,

convene: Sketches for constructive-dialogic play kits.
MERL TR99-30, Mitsubishi Electric Research
Laboratory, Cambridge, MA, 1999.

2. Alexander, C., Ishikawa, S., Silverstein, M.,
Jacobson, M., Fiksdahl-King, I., and Angel, S. A
Pattern Language: Towns, Buildings, Construction,
Oxford University Press, New York, 1977.

3. Erikson, T., and Thomas, J. Putting it all together:
Pattern languages for interaction design. Proceedings
of CHI’97, 226. See also the summary report of the
workshop at http://www.pliant.org/personal
/Tom_Erickson/Patterns. WrkShpRep.html.

4. Gabriel, R. P. The failure of pattern languages.
Journal of Object-Oriented Programming 84-88,
1994.

5. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, MA,
1977.

6. Goldberg, A. What should we teach?

7. Lynch, K. The Image of the City. MIT Press,
Cambridge, MA, 1960.

8. Lynch, K. Reconsidering the image of the city, in
Rodwin, L. and Hollister, R, M. (eds.). Cities of the
Mind: Images and Themes of the City in the Social
Sciences. Plenum Press, New York, 151-161, 1984.

9. Strohecker, C. Construction kits as learning
environments. Proceedings of IEEE International
Conference on Multimedia Computing and Systems
2, 1030-1031, 1999.

10. Strohecker, C. Toward a developmental image of the
city: Design through visual, spatial, and mathematical
reasoning. Proceedings of Visual and Spatial
Reasoning in Design (University of Sydney and
Massachusetts Institute of Technology), 33-50, 1999.

11. Strohecker, C., and Barros, B. A prototype design
tool for participants in graphical multiuser
environments. CHI’97 Extended Abstracts, 246-247,
1997.

12. Strohecker, C., and Barros, B. Make way for
WayMaker. Presence: Teleoperators and Virtual
Environments 9:1, 97-107, 2000.

13. Strohecker, C., Barros, B., and Slaughter, A.
Mapping psychological and virtual spaces,
International Journal of Design Computing,
University of Sydney, 1998.

14. Strohecker, C., and Slaughter, A. Kits for learning
and a kit for kitmaking. Submitted to CHI’00. Also
available as MERL TR2000-02, Mitsubishi Electric
Research Laboratory, Cambridge, MA, 2000.

15. Tidwell, J. Common ground: a pattern language for
human-computer interface design.
http://www.mit.edu
/~jtidwell/ui_patterns_essay.html, 1999.

16. Turkle, S., and Papert, S. Epistemological pluralism:
Styles and voices within the computer culture. Signs
16:1, 1990.

