

Approaches to Processes of Construction

in Software Kits

Carol Strohecker and Adrienne H. Slaughter

Originally appeared as Technical Report 2000-28, Mitsubishi Electric Research Laboratories.
Provides analysis additional to "Designing building processes in software construction kits," Technical Report 2000-03,

Mitsubishi Electric Research Laboratories.
A shorter version appears in Proceedings of the International Workshop on Advanced Learning Technologies,

IEEE Computer Society Press, 2000, pp. 237-238 (which originally appeared as "Approaches to processes of building in
software construction kits," Working Paper 2000-07, Mitsubishi Electric Research Laboratories).

This copy includes an Appendix describing a range of structures for interactive building processes.

Abstract

We have developed a genre of software construction kits and a framework for implementing
them. The framework is both conceptual and structural. Its conceptual aspect derives from
constructivist learning theory, and its structural aspect extends the Java Abstract Windowing
Toolkit. This framework, called the “Kit4Kits,” supports generation of software kits that are
highly graphical and highly interactive. They are characterized by two main processes: players’
building of objects from graphical elements, and the software’s activation of the constructions.
Five existing kits demonstrate a range of techniques for constructing objects. Additional
techniques have become apparent as users of the framework created their own kits. We review
these results and discuss various techniques for constructing graphical, dynamic, two-
dimensional objects in software tools for learning.

Approaches to Processes of Construction
in Software Kits

Carol Strohecker
MERL - Mitsubishi Electric Research Lab

stro@merl.com

Adrienne H. Slaughter
Stanford University
ahs@alum.mit.edu

Abstract

We have developed a genre of software construction
kits and a framework for implementing them. The
framework is both conceptual and structural. Its
conceptual aspect derives from constructivist learning
theory, and its structural aspect extends the Java Abstract
Windowing Toolkit. This framework, called the
“Kit4Kits,” supports generation of software kits that are
highly graphical and highly interactive. They are
characterized by two main processes: players’ building of
objects from graphical elements, and the software’s
activation of the constructions. Five existing kits
demonstrate a range of techniques for constructing objects.
Additional techniques have become apparent as users of
the framework created their own kits. We review these
results and discuss various techniques for constructing
graphical, dynamic, two-dimensional objects in software
tools for learning.

1. Introduction

We are developing a series of software kits based on
the notion of “microworlds” [7] and the theory of
“constructionism” [4, 5]. In this view, people construct
rather than acquire knowledge, actively inventing ideas for
themselves. Idea invention (or knowledge construction, or
learning) is based on internalization of actions and
experiences in the world [3]. Therefore the nature of
particular activities becomes interesting, and activity
design has become a specialization in learning research.
Many of the designs find broader application in real-world
domains such as toys, puzzles, and software [e.g., 8].

Considerations in activity design and interaction design
are guiding development of our software construction kits.
They form a genre in which end-users build and activate
2D graphical objects [11, 15]. Dinosaur skeletons balance
as they walk and run [10]; maps transform into street-level
views [12, 14]; colorful tiles spread into geometric
patterns [2]; animistic creatures simulate the push-pulls of
social dynamics [1, 2]; and dancers’ breathing rates form a
cycle for a shared dance [17].

Figure 1. Five kit prototypes demonstrate varying
approaches to building 2D graphical, dynamic objects.

These kits focus on subject domains as varied as
geometry, symmetry, physical forces, mechanical
structures, time/space relationships, and system dynamics;
yet they incorporate common strategies in activity design
and interaction design. We are currently formulating
generalizations of the strategies and programming
constructs to support production of further instances of the
genre. The resulting Java framework, called the
“Kit4Kits,” is both conceptual and structural [15, 16].

The Kit4Kits is comparable to systems like
Microworlds, Cocoa, Agentsheets, ToonTalk, Squeak, and
other tools for developing simulations and game-like
learning environments.* However, we pay particular
attention to notions of conceptual elements and operations
as characterizers of an epistemological domain [7, 13]. We
also tend specifically to computational supports for image
treatments such as transparencies, filters, and gradients.

In our kit designs, and in kits that others have
developed using the Kit4Kits, we have noted interesting
variations and outstanding problems pertaining to a key
facet of interaction design for the genre. Primarily, the kits
support players’ constructions of graphical objects, which
upon activation become animate in some way. Players
effect the constructions through direct manipulation of
graphical elements, but the manner of access and assembly
of the elements varies from kit to kit.

Here we review varying construction techniques for our
existing prototypes, report on additional construction
techniques developed by trial users of the Kit4Kits, and
identify considerations for further construction techniques.

2. Existing Prototypes

2.1 Bones

In the Bones kit, the player creates skeletons by
dragging individual bones into the work area and
arranging them into the form of a dinosaur. The player can
then animate the construction.

Figure 2. Bones players assemble parts into skeletons and
then animate the creature. The software locates the
construction’s center of mass in order to determine whether
the creature can balance as it moves.

In the first version of the prototype [10], clicking any of
the movement buttons (“stroll,” “hurry,” or “dash”)
triggered several calculations. The program compared
upper and lower portions of the composition and made
guesses about which bones constituted the skeleton’s legs.
Then the program compared the combined mass values of
the bones in the upper portion of the construction to those
in the lower portion, and if the upper portion was too
heavy the skeleton collapsed. Finally the program
calculated the location of the skeleton’s overall center of
mass and illustrated it with a line projecting downward. If
the line fell within a polygon connecting the points of
contact with the “ground”, the creature was deemed
balanced and it proceeded to move, its legs swinging
according to a gait pattern appropriate to the speed and the
number of legs. If the line fell outside of base polygon, the
skeleton collapsed.

Unfortunately the Bones algorithm could not always
decide correctly which pieces constituted the legs, so some
peculiar animations resulted. We made a revision in the
current version of the prototype, such that designating the
legs is part of the construction process. This ensures that
the algorithm has the proper number and locations of legs,
but shifts a burden to the player, whose freeform
construction process is now encumbered by the
specification process prior to seeing the animation.1

Figure 3. Prior to animating, Bones players identify which
parts constitute the creature’s legs. Legs can have several
parts but their movement is articulated only at the hip. Any
of the bones in the kit can be used as leg parts.

1 We also extended the center-of-mass calculation and the set of

gait patterns, so that creatures’ legs now swing according to a
pattern appropriate to the speed, the number of legs, and
frontward or backward location of the center of mass. In a
future version we hope to include articulated legs and perhaps
spines, necks, etc., which would improve the animations but
might necessitate further changes to the construction process.

The trade-off benefit is that any of the bones can be
used anywhere in the skeleton. For example, the fanciful
creature at the right, above, is composed of just three kinds
of bones: skull, pelvis, and digit. (Skulls form the “thighs,”
digits form the “ribs,” and so on.) Players can invent
whimsical creatures or match creations to textbook
illustrations of dinosaurs: the set of bones is based on parts
found in reference books on paleontology. This flexibility
would be lost if we pre-designated a part strictly as a head
bone, a pelvis, vertebra, or etc., though such designations
could simplify the construction process.

2.2 WayMaker

In the WayMaker kit we provide specific parts for
building city layouts, but also allow for their further
specification. The player arranges representations of
districts, edges, paths, landmarks, and nodes into the form
of a map, and the software generates street-level views
along pathways through the mapped domain while
maintaining the relative placements of the elements [12,
14]. However the elements are represented abstractly:
landmarks are triangles, paths are dotted lines, and so on.
The player can substitute more detailed representations:
triangles can become towers, bridges, houses, etc.; lines
can take on the look of textured terrain, etc.

Figure 4. WayMaker players assemble elements of the city
image into a map and then trigger frame-by-frame displays
of views along the pathways.

This construction approach poses benefits for both the
player and the algorithm: the player enjoys freeform
placement of the elements in shaping a map, and the pre-
designation of elements into structural types simplifies the
algorithm’s handling of the elements as it transforms the
construction. The extra step of specifying representations
does not seem to be a burden for players: most prefer
seeing a picture of a tower to an abstract symbol like a
triangle, and they seem to enjoy making the selections.

Other kits constrain the construction process within a
grid-like structure, to guide the player’s building process
and facilitate the software’s handling of elements and
constructions.

2.3 PatternMagix

In PatternMagix a four-part grid supports exploration
of geometric symmetries as players reflect tiles around the
x- and y-axes and rotate tiles within quadrants [2].

Figure 5. PatternMagix players experiment with reflections
and rotations. The software replicates a resulting tile, and
surprising patterns emerge.

2.4 AnimMagix

In AnimMagix a tripartite column guides assembly of
animistic creatures’ perceptual, social, and mobile
behaviors [1, 2]. Sliders enable further adjustments, such
as to the degree of a behavior. Perceptual fields can be
deep as well as broad, attraction can be strongly or mildly
positive or negative, and sweeping movements can be
slow or fast.

Figure 6. AnimMagix players work within a tripartite column
to specify ways in which creatures will interact with one
another.

This manner of construction is familiar from toys,
books, and other media. It constrains the construction
process but has the advantages of providing pre-
established designations for the algorithm and helping to
clarify how the player should go about making a
construction.

Figure 7. Other playthings make use of a similar manner of
construction. 2

2.5 Zyklodeon

We are employing a similar technique for a prototype
now in progress, Zyklodeon, in which players create

2 Fig. 7, left: Animal Twister, Club Earth, Cumberland, RI.

Middle: J. Riddell, Hit or Myth: More Animal Lore and
Disorder, Harper and Rowe, NY, 1949. Right: K. Karakotsios
et al., SimLife: The Genetic Playground, Maxis, Orinda, CA,
1992.

humanistic figures and endow them with properties that
effect timing for a shared dance [17]. Dancers comprise
six parts: head, torso, arms, and legs. Changing from a
default part to a more colorful representation is similar to
element specification in WayMaker, though the overall
construction process is simpler because the defaults are
already in place. In Zyklodeon we add a third tier to the
construction process: within the torso are slider-controlled
settings, like those in AnimMagix, with which the player
can adjust a dancer’s breathing rate and other
choreographic parameters.

Figure 8. Zyklodeon players replace default elements and
specify parameters characterizing dancers’ movements.

Thus our existing prototypes exemplify a range of
construction strategies: freeform construction, freeform
construction with a specification phase, structured
construction, and structured construction with varying
levels and manners of further specification. What remains
constant from one prototype to the next is the importance
of the relationship between the build and activate
processes, which typically plays out as an alternating
pattern, usually with greater player control in the building
and greater algorithm control in the activating.

Acknowledgment of this pattern led us to create
separate structures for the two functions within the
Kit4Kits. The Composer and Arena structures identified
the nature of the activity within a specific screen area.
Composers typically handled building elements; Arenas
handled constructions and the associated algorithms that
activated them. We explored the usefulness of these
structures with several kit creators.

3. Kits by Initial Users of the Kit4Kits

3.1 Abacaudio

Alex wanted to make a kit with which players could
create timing relationships in the context of music-making.
Ball and soundpad elements would be paired such that a
ball falling on a soundpad would make a sound, which
could be specified as a particular tone. Building would
consist of adding paired ball/soundpad elements to the
Composer. Upon activation, each ball would strike its
soundpad, and the Arena would display the strike patterns
in a graph-like notation resembling a musical score. The
patterns could be saved for replay.

Most notable about Alex’s design is that, as in Bones,
the build and activate processes share a screen area but
constitute quite distinct activities. Thus our Composer and
Arena constructs were suitable for his design.

3.2 WordBuilder

Max and Jan began a kit with which players can build
letter combinations into phonemes, and phonemes into
words. The player progresses downward through a process
of word building: letters combine to form phonemes,
which become syllables that form words. Letters must
match according to particular sonority rules in order to
form a phoneme [6]. Matches are saved into pockets
ordered according to proper position of the phoneme
within a word: an onset phoneme combines with a vowel
to begin a word, which ends with a coda syllable. Saved
words may or may not yet appear in an English dictionary,
but must follow the onset-vowel-coda pattern.

Figure 9. The WordBuilder design evolved through several
arrangements of screen areas and corresponding work flow.3

Max and Jan carefully separated the screen areas
according to each of these functions, yet the main areas
support both building and a kind of activating, which takes
the form of checking for proper letter matches and syllable
patterns. Nevertheless Jan implemented both areas by
extending our Composer structure, rather than using the
Composer for one and the Arena for the other.

3.3 Bugs

Chris wanted to make a simulation kit that would deal
with notions of ecology. He wanted players to be able to
control aspects of the environment, which resembles an
ant farm, and creatures that inhabit it, which he called
“bugs.” He separated the two modes into screen displays
that differed somewhat but also contained constant
features.

3 Graphical letterforms are from [9].

Figure 10. Each of the two modes in Bugs includes both build
and activate processes.

In environment mode, the player can add bugs and food
while the simulation is running. This is a kind of
constructing, since the environment becomes more
elaborate, but it is also a kind of activating, since
behaviors play out over time.

Figure 11. The environment mode in Bugs

In bug mode, the player can specify rules governing
bugs’ properties and behaviors, such as being hungry,
seeking or avoiding food, seeking or avoiding other bugs,
seeking food stores, dying when hungry and not finding
food, and so on.

Figure 12. Sketches for guiding bug-building in Bugs

At first Chris represented the rule structure as a kind of

logical chart, but through discussion he moved to more
graphical representations of the settings.

Figure 13. The bug mode reinterpreted

This notion of building is similar to the specification
phase of building in our prototypes. Chris implemented
this functionality by extending the Composer structure.

4. A Typology of Construction Techniques

By working with these kit creators, we realized that the
Composer and Arena structures initially in the Kit4Kits
overspecified notions of building and activating. Now a
more general Zone structure allows for varying notions of
building and activating, which may be interrelated in some
designs.

Experiences with our kits and those devised by
Kit4Kits users has called attention to different kinds of
building that learning environment designers may want to
support. Including different kinds of building may be a
good way to address different learning and thinking styles.

Structures that guide building can be useful when
constructions within a kit take a consistent form. Phased
construction may include sub-processes such as
specification of behavioral properties and image details.

While providing a set of building elements inevitably
constrains what players can make with a given kit,
interaction designs may range from encouraging recipe-
style production of particular constructions to freeform
building that relies on the player’s creativity. We prefer
open-ended building in which players produce novel
constructions but note that younger builders and builders
of complex constructions may benefit from guided
processes such as construction grids and phases. Other
interesting possibilities include reversing a construction
process for an existing object and adjusting or completing
a partially started construction process.

5. Acknowledgments

We owe particular thanks to Edith Ackermann and
Aseem Agarwala, who made key contributions in
originating the Composers and for the Magix kits. They
also contributed significantly in other ways to the designs
of these kits. Several other people have also contributed to
design, development, and use of Magix and the other kits
informing our framework: AARCO medical illustrators,
William Abernathy, Noah Appleton, Maribeth Back,
Barbara Barros, Dan Gilman, Mike Horvath, John Shiple,

Doug Smith, students at Harvard University’s Graduate
School of Design, colleagues at MERL, and anonymous
friends. We thank John Evans, Aradhana Goel, Tim
Gorton, and Milena Vegnaduzzo for participating in trials
of the Kit4Kits. MERL supports the research.

6. References

[1] E. Ackermann and C. Strohecker, “Interaction design for
AnimMagix prototype”, TR98-13, Mitsubishi Electric Research
Lab, Cambridge, MA, 1998.
[2] E. Ackermann and C. Strohecker, “Build, launch, convene:
Sketches for constructive-dialogic play kits”, TR99-30,
Mitsubishi Electric Research Lab, Cambridge, MA, 1999.
[3] H. E. Gruber and J. J. Vonèche (eds.), The Essential Piaget,
Basic Books, New York, 1977.
[4] I. Harel and S. Papert (eds.), Constructionism, Ablex,
Norwood, NJ, 1991.
[5] Y. Kafai and M. Resnick (eds.), Constructionism in Practice:
Designing, Thinking, and Learning in a Digital World, Lawrence
Erlbaum, Mahwah, NJ, 1996.
[6] M. Kenstowicz, Phonology in Generative Grammar,
Blackwell, Cambridge, MA, 1994.
[7] S. Papert, Mindstorms: Children, Computers, and Powerful
Ideas, Basic Books, New York, 1980.
[8] Papert et al., http://el.www.media.mit.edu/.
[9] H. A. Rey, Curious George Learns the Alphabet, Houghton
Mifflin, Boston, 1963, 1991.
[10] C. Strohecker, “Embedded microworlds for a multiuser
environment”, TR95-07, Mitsubishi Electric Research Lab,
Cambridge, MA, 1995.
[11] C. Strohecker, “Construction kits as learning environments”,
Proceedings of IEEE International Conference on Multimedia
Computing and Systems 2, 1999, pp. 1030-1031.
[12] C. Strohecker, “Toward a developmental image of the city:
Design through visual, spatial, and mathematical reasoning”,
Proceedings of Visual and Spatial Reasoning in Design,
University of Sydney and Massachusetts Institute of Technology,
1999, pp. 33-50.
[13] C. Strohecker, “Why knot?”, Ph.D. diss., Massachusetts
Institute of Technology, Media Laboratory, Epistemology and
Learning Group, 1991.
[14] C. Strohecker and B. Barros, “Make way for WayMaker”,
Presence: Teleoperators and Virtual Environments 9:1, 2000,
pp. 97-107.
[15] C. Strohecker and A. Slaughter, “Kits for learning and a kit
for kitmaking”, CHI’00 Extended Abstracts, 2000.
[16] C. Strohecker and A. Slaughter, “A Framework for
Microworld-style Construction Kits”, TR2000-19, Mitsubishi
Electric Research Lab, Cambridge, MA, 2000.
[17] C. Strohecker, A. Slaughter, and M. Horvath, “Zyklodeon
Interaction Design”, WP2000-03, Mitsubishi Electric Research
Lab, Cambridge, MA, 2000.
* See www.lcsi.com, www.crim.ca/~hayne/Cocoa/,
www.agentsheets.com, www.toontalk.com, www.squeak.org.

C
onstructionProcesses.doc

A
PPEN

D
IX

 O

f particular interest are the individual differences that em
erge as people w

ork w
ithin the structures

provided to invent w
ays of building – they build different things, com

bine properties in different
w

ays, and interpret em
ergent effects differently.

 Supporting different kinds of building m
ay be a good w

ay to address different thinking styles
(corresponding to different ages, genders, cultures, etc.):
- freeform

 vs. pre-fab, recipe-style construction - novel construction (from
 scratch) vs. reversing the

construction process of an existing object
- novel construction vs. adjusting or com

pleting a partially started construction process

A
SSEM

B
LE

FR
O

M

SC
R

A
TC

H

G
U

ID
ED

A

SSEM
B

LY

C
O

M
PLETE

EX
ISTIN

G

O
B

JEC
T

R
EPLA

C
E

PA
R

TS
R

EV
ER

SE
EX

ISTIN
G

O

B
JEC

T

O
PER

A
TE

EX
ISTIN

G

O
B

JEC
T

 D
ETER

M
IN

ED

O
U

TC
O

M
E

 LEG

O
 m

odels

 Furby

 O
PEN

-EN
D

ED

 (though # of
pieces lim

its
possibilities)

 LEG
O

s
 W

ayM
aker

(phased w
ith

elem
ent

specifications)
 B

ones (phased
w

ith leg
designations)

 PatternM
agix

 A
nim

M
agix

 M
r. Potato

H
ead

 Z
yklodeon

